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A description of the tilt of octahedra in ABX3 perovskite-

related structures is proposed that can be used to extract the

unique values for the tilt parameters ’, � and � of ABX3

structures with regular and distorted octahedra up to the point

symmetry �11, from atomic coordinates and lattice parameters.

The geometry of the BX6 octahedron is described by three

B—X bond lengths (r1, r2, r3) and three X—B—X bond angles

( 12,  13 and  23) or alternatively by a local strain tensor

together with an average B—X bond length. Connections

between the proposed method and Glazer’s tilt system are

discussed. The method is used to analyze structural transfor-

mations of I2/c, Pbnm and Immm structures. The proposed

description allows the analysis of group–subgroup relations

for the ABX3 structures with distorted octahedra, in terms of

octahedral deformations and tilting. The method might also be

of interest in the study of the phase transitions in the family of

ABX3 structures.
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1. Introduction

Interest in ABX3 compounds with the perovskite-type struc-

ture arises from the wide variety of physical phenomena that

have been observed in them. These phenomena include the

ferroelectric and piezoelectric properties of BaTiO3 and

Pb(Zr,Ti)O3 (Newnham, 1998), superconductivity in BaBiO3

(Sleight et al., 1975) and colossal magnetoresistance (CMR) in

doped manganites Ln1�xAxMnO3 (Ln = lanthanide ion, A =

alkaline earth ion; Goodenough, 2004). For perovskite-related

structures, temperature- and composition-dependent phase

transitions have been observed between different electronic

and magnetic states. Moreover, in some cases these phase

transitions are accompanied by structural phase transitions

which are caused by distortions and tilting of octahedral

groups BX6 (Howard et al., 2000). The quantitative description

of these structural changes seems to be a useful tool for the

understanding of the correlation between physical properties

and crystal structures of these materials.

The ideal ABX3 perovskite structure is cubic (space group

Pm�33m) and is composed of a three-dimensional network of

vertex-sharing BX6 octahedra. The A-site cation fills the 12-

coordinated cavities (cuboctahedra) of the three-dimensional

network (Glazer, 1972). This structure is very flexible and it

can accommodate most of the metallic elements of the peri-

odic table. Depending on the ionic radii of A and B, octahedra

are tilted, thus reducing the volume of the cuboctahedron until

it fits the size of the A cation. Tilting of octahedra reduces the

symmetry of structure. Analysis of perovskite-related struc-

tures has shown that in many cases the BX6 octahedra are



distorted, which may be a cause for the reduction of symmetry

by itself. There are many ways in which the octahedra can tilt

and distort, each leading to a different symmetry.

The discussion on octahedral tilting in the ABX3 structures

was initiated by Megaw (1966). Different tilt schemes are

usually described according to a notation developed by Glazer

(1972). In that work, regular BX6 octahedra were assumed and

all tilts were considered to be combinations of three inde-

pendent rotations about the three cubic axes. It was shown

that the space group may be determined by the pattern of

octahedral tilting and a classification of octahedral tilting in

terms of 23 alternative tilt systems was given. Some of these 23

tilt systems describe the same structures with identical space

groups. Therefore, the 23 tilt systems give rise to only 15

different structures. A group-theoretical analysis has shown

that only 15 space groups need be used for the description of

perovskite-related structures with regular octahedra (Howard

& Stokes, 1998, 2004). An analysis of the geometrical aspects

of the tilting schemes of Glazer (1975) showed that six out of

23 tilting schemes, representing two of the 15 space groups,

cannot be realised by regular octahedra and distortions of the

octahedra are inherent in these structures (Woodward

1997a,b). An analysis of the group–subgroup relations

between ABX3 structures with distorted octahedra has been

carried out by Bock & Müller (2002). Taking into account the

possibility of octahedral distortions they derived ten addi-

tional space groups for the ABX3 structures.

A quantitative description of octahedral tilts of peroskite-

based compounds has been of continued interest amongst

crystallographers, and a mathematical description has been

given for the relation between tilt angles of so-called one-tilt

structures of regular octahedra and lattice parameters

(Megaw, 1969; Megaw & Darlington, 1975; O’Keeffe & Hyde,

1977). However, symmetry requires regular octahedra only in

the ideal Pm�33m structure. Low-symmetry structures that can

be realised by pure tilts may have distortions of octahedra in

addition, while distortions of BX6 octahedra are inherent to

other symmetries (cited above). In several structures these

distortions are so large that they cannot be neglected. The first

attempt to describe perovskite-related structures with

distorted octahedra was made by Thomas & Beitollahi (1994).

Six variables were used for a parametrization of the structure

with the space group Pbnm on the 21=2ac � 21=2ac � 2ac lattice:

three B—X bond lengths assumed to be orthogonal to each

other, and three angles, �1, �2 and �3, between corresponding

bonds and the nearest pseudo-cubic lattice translation vectors.

Later, introducing additional parameters such as �i, describing

the angles between planes formed by chains of octahedral

stalks and the corresponding pseudo-cubic lattice axes, the

orthogonal approximation of B—X bonds was removed and a

new global parameterization of perovskite structures was

developed (Thomas, 1998). The angular parameters �i and �i

in Thomas’s model are defined relative to pseudo-cubic lattice

translation vectors. On the other hand, the orientations of

pseudo-cubic lattice translation vectors depend on the tilting

angles themselves, therefore the angles �i reflect not only

tilting but also the deformations of the lattice and octahedra.

The description of octahedral tilt, while also allowing for

the calculation of tilt angles from the crystallographic data in

the presence of octahedral distortions, is an unsolved problem.

In this contribution a method is proposed that uniquely

decomposes any ABX3 derived structure into a description by

tilts and deformations of BX6 octahedral groups. Mathema-

tical formulae are presented for the calculation of tilt angles

from crystallographic data.

2. Deformations and tilting angles

In ABX3 structures octahedral distortions and tilts can be

described by shifts of the X atoms. The relative shifts of X

atoms which are transverse to the B—X bonds cause shear-

like deformations of the octahedra (deviations of X—B—X

bond angles from 90�), longitudinal relative shifts cause Jahn–

Teller-type deformations (difference in B—X bond lengths),

while cooperative shifts of X atoms give rise to rotations or

tilting of the octahedra. To analyze the three-dimensional

network of deformed and tilted octahedra it is necessary to

define deformations and tilting of octahedra in such a way that

they satisfy the following conditions:

(i) Octahedral tilting should be described by rotations such

that a one-to-one correspondence exists between values of tilt

parameters and crystal structure.

(ii) Parameters for tilt and deformations should be defined

in the same way for all structures, so that it will be possible to

compare structures of different symmetries and different tilt

systems in terms of these parameters.

The main problem is that a given crystal structure cannot

uniquely be separated into parameters for tilt and parameters

for deformations of the BX6 octahedral group. Some, initially

arbitrary, definitions need to be introduced. One such choice –

restricted to structures with a 21=2ac � 21=2ac � 2ac unit cell

and space group Pbnm – has been given by Thomas (1996).

Here we present a more general definition of tilt and defor-

mation parameters that can be applied to all tilt systems and

symmetries, and that satisfies the requirements above.

The ideal ABX3 structure of highest symmetry (space group

Pm�33m) is the natural choice for the structure of zero tilt that

corresponds to any compound composed of regular BX6

octahedra. The tilted structure is then characterized by non-

zero values for tilt parameters (defined below) and zero values

for parameters describing the deformations of BX6 groups.

The zero-tilt structure of regular octahedra can be character-

ized and defined as that structure for which all B—X bonds are

parallel to one out of three directions: the three basis vectors

of the primitive cubic lattice. Alternatively, the zero-tilt

structure of regular octahedra can be defined through the

bisectors of X—B—X angles of 90� forming an F-centered

cubic lattice. In particular, the zero-tilt structure possesses a

plane containing the B atom and four X atoms of each octa-

hedron on which the bisectors of X—B—X angles define a

rectangular grid (Fig. 1a). The latter property is retained in

compounds with deformed octahedra if BX6 groups obey the

point symmetry �11.
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Hence, for compounds composed of distorted octahedra we

propose the zero-tilt structure be defined as the structure in

which one plane of bisectors of X—B—X bond angles forms a

rectangular grid (Figs. 1b and c). Notice that this structure can

and should always be constructed by pure rotations of the

deformed octahedral groups as they are present in the real

crystal structure. In this way a unique separation is obtained

between tilt and deformation of the BX6 octahedral groups. A

single type of deformed octahedral group may form zero-tilt

structures of different symmetry (Fig. 1).

A distorted octahedron of point symmetry �11 can be

described by three vectors, r1; r2 and r3, that define the

directions and lengths of the B—X bonds (Fig. 2). Denote the

angle between ri and rj by  ij, for i, j = 1, 2, 3 (Fig. 2). A

Cartesian coordinate system (XYZ) is defined with the X axis

parallel to the bisector of r1 and r2, with the Y axis parallel to

the bisector of �r1 and r2, and with Z perpendicular to XY

(Fig. 2). Unit vectors along X, Y and Z are denoted by e1, e2

and e3, respectively. As noted in the discussion above, this

definition of X and Y leads to perpendicular vectors e1 and e2

for any set of r1, r2 and r3, while the latter are not necessarily

perpendicular to each other. The vectors r1, r2 and r3 may be

expressed in terms of the Cartesian basis vectors as

r1 ¼ r1 cos
 12

2
e1 � sin

 12

2
e2

� �

r2 ¼ r2 cos
 12

2
e1 þ sin

 12

2
e2

� �

r3 ¼ r3

�
cos 13 þ cos 23

2 cosð 12=2Þ
e1 þ

cos 23 � cos 13

2 sinð 12=2Þ
e2þ

½ð1� cos2  12 � cos2  13 � cos2  23

þ 2 cos 12 cos 13 cos 23Þ
1=2
�=sin 12e3

�
¼ r3½sin �1 cos �2e1 þ sin �1 sin �2e2 þ cos �1e3�: ð1Þ

Angles �1 and �2 are polar coordinates for the vector r3, with �1

the angle between r3 and e3, and with �2 the angle between the

projection of r3 onto the XY plane and e1. The angles �1 and �2

are related to the bond angles  ij as

tan �2 ¼
cos 23 � cos 13

cos 23 þ cos 13

cot
 12

2

sin �1 ¼
cos 23

cos½ð 12=2Þ � �2�
: ð2Þ

The octahedral angles  12,  13 and  23 take only positive

values near 90� by definition, hence the angles �1 and �2 will

take values between �90 and 90�.

The orientation of a distorted octahedron is completely

defined by three parameters. These parameters can be chosen

in three different ways:

(i) one angle, �, describing the rotation of the octahedron

about an axis R, the direction of which is defined by two

independent parameters via direction cosines with respect to

the Cartesian coordinate system;

(ii) two angles, � and �, describing rotations about a pair of

perpendicular axes, e.g. the Z axis and an axis R lying in the

XY plane in a direction defined by one angle, �;
(iii) three angles, �1; �2 and �3, describing the rotations of

an octahedron about the X, Y and Z axes, respectively.

In description (i) the orientation of the octahedron is

described by a single rotation. This description has been used

for analyzing the octahedral tilt in one-tilted ABX3 structures

with symmetries R�33c, I4=mcm and Im�33 (Megaw & Darlington,

1975; O’Keeffe & Hyde, 1977; Thomas & Beitollahi, 1994).

However, if the orientation of the rotation axis is not fixed by

symmetry this method becomes complicated because of the

arbitrary orientation of the rotation axis. Description (iii) has

been used by Glazer (1975). In contrast to description (i) the

rotation axes are fixed in space, but difficulties in interpreta-

tion arise because of noncommutative rotations (for the same

set of angles �1; �2 and �3 describing rotations of octahedra

about three orthogonal axes the orientation of the octahedron

depends on the sequence of rotations). Description (iii) is not
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Figure 2
The stereographic projection of basic vectors r1, r2 and r3 of distorted BX6

octahedra. The X, Y and Z axes of the Cartesian coordinate system XYZ
are indicated (the Z axis is perpendicular to the plane of the figure).  12,
 13,  23 indicate the angles between the corresponding basic vectors, �1 is
the angle between r3 and the Z axis, and �2 is the angle between the
projection of r3 on the XY plane and X axis.

Figure 1
Schematic representations of the (XY) layer of zero-tilt ABX3 structures.
(a) Structure with regular octahedra; (b) structure with tetragonal
arrangement of distorted octahedra; (c) structure with orthorhombic
arrangement of distorted octahedra. Large circles correspond to X atoms,
small circles to B atoms. Thick lines correspond to B—X bonds, thin lines
to octahedral edges and dashed lines to bisectors of X—B—X angles.



easily generalized towards a full characterization of structures

with deformed octahedra. Therefore, we propose a set of

parameters on the basis of description (ii), that provides a

unique characterization of tilt in ABX3 structures. The direc-

tion of the rotation axis R is defined by the angle � between R

and the Y axis. Then the rotations Zð’Þ and R�ð�Þ may be

defined on the basis of the Cartesian coordinates as

R�ð�Þ ¼

cos � þ sin2 �ð1� cos �Þ � sin � cos �ð1� cos �Þ cos � sin �

� sin � cos �ð1� cos �Þ cos � þ cos2 �ð1� cos �Þ sin � sin �

� cos � sin � � sin � sin � cos �

0
B@

1
CA
ð3Þ

Zð�Þ ¼
cos� � sin� 0

sin� cos � 0

0 0 1

0
@

1
A: ð4Þ

The rotations are not commutative, but they obey the simple

relation

Zð’ÞR�ð�Þ ¼ R�þ’ð�ÞZð’Þ: ð5Þ

Inspection of Fig. 3 shows that R� in the zero-tilt structure and

R�þ� in the Zð�Þ-rotated structure have identical orientations

with respect to the octahedron. In this way, the parameters �; �
and � uniquely correspond to a particular tilt in ABX3 struc-

tures. Using the transformation matrices (3) and (4), the basis

vectors r0i of the Zð’ÞR�ð�Þ-rotated octahedron may be

expressed as follows [see (1)]

r01 ¼ r1½cosð
 12

2
� ’Þ � cosð

 12

2
þ �Þ cosð�þ ’Þð1� cos �Þ�e1

þ r1½� sinð
 12

2
� ’Þ � cosð

 12

2
þ �Þ

� sinð�þ ’Þð1� cos �Þ�e2

� r1 cosð
 12

2
þ �Þ sin �e3

r02 ¼ r2½cosð
 12

2
þ ’Þ � cosð

 12

2
� �Þ cosð�þ ’Þð1� cos �Þ�e1

þ r2½sinð
 12

2
þ ’Þ � cosð

 12

2
� �Þ sinð�þ ’Þð1� cos �Þ�e2

� r2 cosð
 12

2
� �Þ sin �e3

r03 ¼ r3½sin �1 cosð’þ �2Þ � sin �1 cosð�� �2Þ cosð�þ ’Þ

� ð1� cos �Þ þ cos �1 cosð�þ ’Þ sin ��e1

þ r3½sin �1 sinð’þ �2Þ � sin �1 cosð�� �2Þ sinð�þ ’Þ

� ð1� cos �Þ þ cos �1 sinð�þ ’Þ sin ��e2

þ r3½cos �1 cos � � sin �1 cosð�� �2Þ sin ��e3: ð6Þ

Equation (6) describes the basis vectors of the tilted octa-

hedron in terms of octahedral parameters r1, r2, r3,  12, �1, �2

and and tilt parameters �, � and �. Alternatively, the vectors r0i
can be obtained directly from the atomic coordinates and

lattice parameters of a structure model. Equation (6) can thus

be used for the construction and analysis of crystal structures

of perovskite-related ABX3 structures.

The deformation state of an octahedron can be character-

ized by the local strain tensor eij (i; j ¼ 1; 2; 3), defined as

(Zhao et al., 1993)

eij ¼

� ri

hrii
i ¼ j

�
2 �  ij i 6¼ j

; ð7Þ

where hrii ¼ ðr1 þ r2 þ r3Þ=3 is the average B—X bond length.

The local strain tensor is completely determined by the octa-

hedral parameters ri and  ij (i; j ¼ 1; 2; 3), while the latter can

be obtained from the combination of local strain tensor and

average bond length. In this way, deformed perovskite struc-

tures are completely characterized by nine parameters: the

average B—X bond length, five independent local strain

parameters and three tilt parameters. Octahedron point

symmetries higher than �11 and translational symmetries of up

to fourfold superstructures are reflected by relations between,

and restrictions on, these parameters, as they will be discussed

for selected cases in x3.

In each ABX3 structure there are octahedra of various

orientations defined by the point symmetry of the structure.

The number of distinguishable orientations is equal to the

ratio of point symmetry of the structure and the point

symmetry of the octahedron. For example, in orthorhombic

structures containing octahedra of the point symmetry �11 there

are four distinguishable orientations of octahedra, but only

two distinguishable orientations are found for octahedra of

point symmetry 2=m. Possible arrangements of octahedra are

defined by the space group, but for a given space group the

possible tilts and deformations are restricted by the condition

research papers

Acta Cryst. (2007). B63, 190–200 Rafael Tamazyan et al. � Tilt of distorted octahedra 193

Figure 3
The schematic representation of the (XY) layer of the Rð�Þ and Zð’Þ
tilted ABX3 structure. The � tilting axis R� is indicated, the ’ tilting axis is
perpendicular to the figure.



that the sum of bond vectors along any closed path should be

identical to zero. For example, in the layer defined by r1 and r2

bonds, the octahedra numbered (1), (2), (5) and (4) form a

closed loop (Fig. 3). The following connectivity condition

should then be satisfied

r12 � r21 þ r22 � r51 þ r52 � r41 þ r42 � r11 ¼ 0: ð8Þ

Equation (8) is a connectivity condition for one layer. For the

three-dimensional network of BX6 octahedra similar condi-

tions should be satisfied for the layers r1r3 and r2r3. Since the

symmetry relations between octahedra (1), (2), (5) and (4)

also need to be satisfied, the connectivity conditions will lead

to relations between octahedral parameters (r1, r2, r3,  12,  13,

 23) and tilt parameters (�; �; �). In x3, these relations will be

presented for structures with various tilt patterns of regular

and distorted octahedra.

3. Applications

3.1. Orthorhombic symmetry Pbnm

Many compounds have been found to crystalize in the

distorted perovskite-type structure of symmetry Pbnm on a

21=2ac � 21=2ac � 2ac supercell of the primitive cubic unit cell.

Tilt systems that lead to this structure are a�a�cþ and a�a�aþ.

The point symmetry of Pbnm is the orthorhombic subgroup

maþbmb�amc of cubic m�33m. Orientations of these mirror

planes can also be given as the point group mxmymz with

respect to the Cartesian coordinates (XYZ) (see x2). Here-

after, the subscripts a; b; c will be used to indicate quantities

defined with respect to the pseudo-cubic unit cell, and

subscripts x; y; z will indicate quantities defined on the

Cartesian coordinates (XYZ). The Pbnm structure contains a

single crystallographically independent octahedron. Within a

single (XY) layer, two orientations are found that are related

by the mirror SðmxÞ. That is, octahedra (1), (3), (5) and (6) in

Fig. 3 have the same orientation, while the orientations of (2)

and (4) are obtained from (1) by the operator SðmxÞ. Orien-

tations of octahedra consecutive along Z are related by the

mirror SðmzÞ. Employing these symmetries, two independent

connectivity conditions are obtained, that can be written as

r02 � SðmxÞr
0
1 þ SðmxÞr

0
3 � Sð2yÞr

0
3 þ Sð2yÞr

0
1 � SðmzÞr

0
2

þ SðmzÞr
0
3 � r03 ¼ 0

r02 � SðmxÞr
0
1 � SðmxÞr

0
2 þ r01 � r02 þ SðmxÞr

0
1

þ SðmxÞr
0
2 � r01 ¼ 0; ð9Þ

where Sð2yÞ ¼ SðmzÞSðmxÞ. These conditions are satisfied if

ðr01Þz ¼ ðr
0
2Þz, leading to [see (6)]

r1 cos
 12

2
þ �

� �
¼ r2 cos

 12

2
� �

� �
: ð10Þ

It follows that the direction of the tilt axis R� is completely

defined by the octahedral parameters. For a regular octahe-

dron � ¼ 0� and R� is parallel to Y, i.e. to b. Basis vectors of

the orthorhombic lattice can be expressed in terms of octa-

hedral and tilt parameters as (Fig. 4)

a ¼ 2½r1 cos
 12

2
� ’

� �
þ r2 cos

 12

2
þ ’

� �

� 2r1 cos
 12

2
þ �

� �
cosð’þ �Þð1� cos �Þ�e1

b ¼ 2½r1 sin
 12

2
� ’

� �
þ r2 sin

 12

2
þ ’

� �
�e2

c ¼ 4r3½cos �1 cos � � sin �1 cosð�� �2Þ sin ��e3: ð11Þ

It follows that b does not depend on � tilting, while c does not

depend on � tilting. Tilt parameters can be expressed in the

structural parameters as [see (6) and (10)]

tan � ¼
r1 � r2

r1 þ r2

cot
 12

2

sin � ¼ �
ðr02Þz

r2 cosð 12=2� �Þ
¼ �

ðr01Þz
r1 cosð 12=2þ �Þ

tanð’þ �Þ ¼ 2
ðr01Þx � ðr

0
2Þx

b
: ð12Þ

As an example, consider the structure of La0.82Ca0.18MnO3. At

room temperature the lattice parameters are a = 5.5126 (3),

b = 5.5125 (2) and c = 7.7741 (3) Å. At room temperature the

lattice parameters are a = 5.5126 (3), b = 5.5125 (2), c =

7.7741 (3) Å (unpublished). Structural parameters of the

MnO6 octahedron are r1 = 2.0064, r2 = 1.9577, r3 = 1.9785 Å,

 12 = 88.72,  13 = 89.99,  23 = 90.64�, leading to tilt parameters

of � = 0.72, ’ = �6.63 and � = 11.05�. The tetragonal feature of

the lattice depends on a certain relation between tilting angles

and octahedral parameters. From (11) this relation is obtained

as

r1 cosð 12=2� ’þ �=4Þ þ r2 cosð 12=2þ ’þ �=4Þ

21=2r1 cosð 12=2þ �Þ cosð’þ �Þ

¼ ð1� cos �Þ: ð13Þ

The tilt parameters satisfy this condition with accuracy better

than 4%.

3.2. Tetragonal substructures of Pbnm

The question arises, which values of octahedral and tilt

parameters define a tetragonal structure in contrast to an
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Figure 4
Perspective views of the Pbnm structure: (a) along Z (the arrows indicate
the orientations of the R� tilting axis for each octahedron); (b) along R�.



orthorhombic structure with a pseudo-tetragonal lattice, as

was found for La0:82Ca0:18MnO3. Equation (11) demonstrates

that the lattice constant a depends on both tilt angles, while

the lattice constant b depends only on ’ tilting. In tetragonal

structures the a and b lattice constants are equal and it follows

that � ¼ 0�, leading to the condition [see (13)]

r1 cos
 12

2
� ’þ

�

4

� �
þ r2 cos

 12

2
þ ’þ

�

4

� �
¼ 0: ð14Þ

This equation has the solutions:

(i)  12 ¼ �=2, with r1 ¼ r2 and

(ii)  12 ¼ �=2, with ’ ¼ 0.

Solution (i) together with the additional condition �1 ¼ 0

determines that the point symmetry of the octahedron is

4z=mz, thus the consecutive octahedra along Z become

translationally equivalent. The n glide of the space group

Pbnm transforms into an a glide, determining the space group

of this structure as P4=mbm (Fig. 5a). The tilt system is aoaocþ

(Glazer, 1975). The basis vectors of the lattice are

a ¼ 2ð2Þ1=2r1 cos ’e1

b ¼ 2ð2Þ1=2r1 cos ’e2

c ¼ 2r3e3: ð15Þ

In the structure corresponding to solution (ii) consecutive

octahedra along Z are translationally equivalent, but the

symmetry of an octahedron is mxþymx�ymz. The space group of

this structure is P4=mbm (Fig. 5b) with basis vectors of the

lattice given by

a ¼ 21=2
ðr1 þ r2Þe1

b ¼ 21=2
ðr1 þ r2Þe2

c ¼ 2r3e3: ð16Þ

This perovskite-derived structure is obtained from the ideal

cubic perovskite structure by distortions of octahedra and zero

tilt. The tilt system is aoaoao, and this structure does not appear

in the classification of Glazer (1975). It is one of ten additional

structures derived by Bock & Müller (2002).

3.3. I2c Monoclinic symmetry I2/c

The tilt system a�a�c� describes the monoclinic I2=c

structure. This structure and the orthorhombic Pbnm structure

display identical arrangements of octahedra within a single

(XY) layer, but the orientations of consecutive octahedra

along the Z direction are related by the symmetry operator

SðmxÞ rather than SðmzÞ for Pbnm. Connectivity conditions (8)

are always fulfilled and they do not lead to constraints on the

octahedral and tilt parameters. Basis vectors of the monoclinic

21=2ac � 21=2ac � 2ac lattice can be expressed via basis vectors

r01, r02 and r03 of the tilted BX6 octahedron as

a ¼ � 2½ðr02Þy � ðr
0
1Þy�e2 þ 2½ðr02Þz � ðr

0
1Þz�e3

b ¼ 2½ðr02Þx þ ðr
0
1Þx�e1

c ¼ 4½ðr03Þye2 þ ðr
0
3Þze3�: ð17Þ

In the monoclinic structures there is no symmetry element

restricting the rotation of the whole structure about the

unique axis. Hence, the octahedral rotations about Z and R�

axes describe not only the tilting of octahedra, but also the

rotation of the whole structure about X (twofold axis).

Keeping the ab layers of the structure parallel to the XY plane

of the Cartesian coordinate system then gives the same

condition, ðr01Þz ¼ ðr
0
2Þz, as was obtained from connectivity

conditions in the case of orthorhombic Pbnm symmetry [see

(10)]. Basis vectors of the monoclinic lattice can then be

expressed in octahedral and tilt parameters [see (6), (10) and

(17)]

a ¼ 2½�r1 sinð
 12

2
� ’Þ � r2 sinð

 12

2
þ ’Þ�e2

b ¼ 2½r1 cosð
 12

2
� ’Þ þ r2 cosð

 12

2
þ ’Þ

� 2r1 cosð
 12

2
þ �Þ cosð’þ �Þð1� cos �Þ�e1

c ¼ 4r3½sin �1 sinð’þ �2Þ � sin �1 cosð�� �2Þ sinð�þ ’Þ

� ð1� cos �Þ þ cos �1 sinð�þ ’Þ sin ��e2 þ 4r3½cos �1 cos �

� sin �1 cosð�� �2Þ sin ��e3: ð18Þ

Octahedral tilt parameters can be obtained from the structural

parameters by

tan � ¼
r1 � r2

r1 þ r2

cot
 12

2

sin � ¼ �
ðr02Þc sin �

r2 cosð 12=2� �Þ
¼ �

ðr01Þc sin �

r1 cosð 12=2þ �Þ

tanð’þ �Þ ¼ 2
ðr01Þb � ðr

0
2Þb

a
; ð19Þ

where ðr0Þc is the component of the r0 parallel to the mono-

clinic c axis and ðr0Þb is the component of the r0 parallel to b

(Fig. 6).

3.4. Substructures of I2/c

As for Pbnm symmetry (x3.1), structures for which the

space group is a supergroup of I2=c are of most interest. First,

consider the transformation of the monoclinic I2=c structure
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Figure 5
The projections of tetragonal P4=mbm structures on the ab plane. (a)
Structure corresponding to the ( 12 ¼ �=2, r1 ¼ r2, �1 ¼ 0) solution of
equation (14), BX6 octahedra are on the fourfold axes. (b) Structure
corresponding to the ( 12 ¼ �2, ’ ¼ 0, �1 ¼ 0) solution of equation (14),
BX6 octahedra are on twofold axes.



into orthorhombic structures. An orthogonal lattice is

obtained, if the e2 component of c is zero [see (18)]

sin �1½sinð’þ �2Þ � cosð�� �2Þ sinð�þ ’Þð1� cos �Þ�

þ cos �1 sinð�þ ’Þ sin � ¼ 0: ð20Þ

However, the fulfillment of this condition is not sufficient to

obtain an orthorhombic structure as it is demonstrated by the

monoclinic low-temperature structure of La0:815Ba0:185MnO3

(Rotiroti et al., 2005). Initially, X-ray powder diffraction

indicated an orthorhombic lattice for this compound

(Arkhipov et al., 2000). Structure refinements against single

crystal diffraction data showed, however, that the structure is

monoclinic (Rotiroti et al., 2005). The octahedral parameters

are r1 = 1.975 (3), r2 = 1.968 (3), r3 = 1.976 (1) Å,  12 = 89.75,

 13 = 90.46,  23 = 90.19, �1 =�0.50, �2 =�22.65�, leading to tilt

angles � = 9.62, ’ =�0.22, � = 0.10�. Parameters �1, ’ and � are

close to zero, and it is easily verified that zero values of �1 and

�þ � are a solution to equation (20), making the lattice

orthogonal, but retaining the monoclinic symmetry of the

structure. A structure with orthorhombic symmetry is

obtained by the solution �1 ¼ � ¼ 0 of (20), then defining a

structure with space group Ibam and lattice constants (Fig. 7)

a ¼ 2 �r1 sin
 12

2
� ’

� �
� r2 sin

 12

2
þ ’

� �� �
e2

b ¼ 2 r1 cos
 12

2
� ’

� �
þ r2 cos

 12

2
þ ’

� �� �
e1

c ¼ 4r3e3: ð21Þ

This structure corresponds to the tilt system aoaoc�.

The solution � ¼ ’ ¼ �2 ¼ 0 of (20) defines the ortho-

rhombic structure with space group Ibmm, tilt system a�a�co

and lattice parameters (Fig. 8)

a ¼ 4r1 cos
 12

2
cos �e1

b ¼ 4r1 sin
 12

2
e2

c ¼ 4r3 cosð� þ �1Þe3: ð22Þ

Notice that Ibmm is a supergroup structure of Pbnm with the

same octahedral and tilt parameters.

Further restrictions on the octahedral parameters of the

Ibam structure, viz. r1 ¼ r2 and  12 ¼ �=2, in addition to

�1 ¼ � ¼ 0, define a tetragonal structure with the space group

I4=mcm, while the tilt system remains that of Ibam.

The space group I2=c is a subgroup of the space group R�33c

(tilt system a�a�a�). The phase transition observed for

La0:815Ba0:185MnO3 at Ts = 187 K (Rotiroti et al., 2005) is a

group–subgroup phase transition. As shown above, octahedral

tilting in the I2=c structure is described by two independent

rotations, while octahedral tilting in the R�33c structure has

traditionally been described by a single rotation about [111] of

the pseudo-cubic unit cell (Megaw & Darlington, 1975). This

makes analysis of this phase transition in terms of octahedral

tilting and deformations difficult. Obviously, the tilting in R�33c

should also be described by ’ and � rotations.
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Figure 6
Perspective views of the I2=c structure: (a) along Z (the orientations of
R� tilting axes are indicated, the dashed arrows relate to the lower layer
and the solid arrows relate to the upper layer); (b) along R�.

Figure 7
Perspective views of the Ibam structure: (a) along Z; (b) along R�.

Figure 8
Perspective views of the Ibmm structure: (a) along Z; (b) along R�.



In the rhombohedral structure the B atoms occupy posi-

tions on the threefold axes and the point symmetry of the BX6

octahedron is �33m (r1 ¼ r2 ¼ r3 ¼ r,  12 ¼  13 ¼  23 ¼  ).

These octahedral parameters determine the orientation of the

R� tilt axis by � ¼ 0. The twofold axis of I2=c coincides with a

twofold axis of R�33c. Applying the restraints on the octahedral

parameters to the lattice translation vectors of I2=c [see (18)],

and to the basis vectors of the octahedron [see (6)], the

following relation between ’ and � tilt parameter angles can

be derived; it must be fulfilled for the structure to become

rhombohedral

sin � ¼ � tan ’ cot
 

2
3� tan2  

2

� �1=2

: ð23Þ

The lattice constants of this structure in a hexagonal setting

can be expressed in octahedral and tilt parameters as (Fig. 9)

ah ¼ 4r sin
 

2
cos� cos �

ch ¼ 12r cos
 

2
1�

1

3
tan2  

2

� �1=2

: ð24Þ

If the tilting angle of octahedra about [111] of the pseudo-

cubic lattice is 	, then the relations between 	, � and ’ angles

may be written as

cos 	 ¼ cos’ cos �

tan ’ ¼ � sin 	
tanð =2Þ

½3� tan2ð =2Þ sin2 	�1=2

tan � ¼ tan 	 1�
1

3
tan2  

2

� �1=2

: ð25Þ

The transition of the rhombohedral R�33c structure into the

monoclinic I2=c structures may arise due to two independent

processes:

(i) by the symmetry reduction of the BX6 octahedron and

(ii) by the violation of the coupling between � and � [see

(23)].

At room temperature in the high-symmetry R�33c structure of

La0:815Ba0:185MnO3 the octahedral parameters are r = 1.975 Å

and  = 90.95�, and the octahedra are tilted about [111] of the

pseudo-cubic lattice by 	 = 9.32�. The latter is equivalent to

Zð’Þ tilting and R�ð�Þ tilting about [110] by ’ = �5.46 and � =

7.57�, respectively. Comparing the values of octahedral and tilt

parameters at temperatures above and below the phase

transition, the latter could be described in terms of octahedral

deformations and tilting (Rotiroti et al., 2005). Three equal

Mn—O bond lengths and  6¼ 90� of the rhombohedral R�33c

structure are replaced by unequal bond lengths and angles  ij

close to 90� in the monoclinic phase, thus reducing the shear

distortion of the MnO6 octahedron at the expense of intro-

ducing a Jahn–Teller-type distortion. Also, the tilting changes

with �monoclinic close to 	rhombohedral and ’monoclinic close to zero

replacing �rhombohedral = �5.46�. Such a change in tilting angles

might also be interpreted as a change in the direction of the 	
tilt axis from [111] in the rhombohedral structure toward [110]

in the monoclinic phase.

3.5. Orthorhombic symmetry Immm

The aþbþcþ tilt system creates the orthorhombic Immm

structure. In this structure octahedra linked via r1, r2 and r3

have orientations related by the symmetry operators SðmxþyÞ,

Sðmx�yÞ and SðmzÞ, respectively. Connectivity conditions are

identically fulfilled and they do not produce restrictions on

octahedral and tilt parameters. Basis vectors of the

2ac � 2ac � 2ac superlattice can be expressed in octahedral

and tilt parameters as (Fig. 10)
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Figure 9
Perspective views of the R�33c structure: (a) along Z; (b) along R�. The
hexagonal unit cell is indicated.

Figure 10
Perspective views of the Immm structure: (a) along Z (the arrows indicate
the orientations of R� tilt axes); (b) along R�.



a ¼ 2½r01 � SðmxþyÞr
0
1� ¼ 2r1

�
sin

 12

2
þ �

� �
½cosð’þ �Þ

þ sinð’þ �Þ� þ cos � cos
 12

2
þ �

� �
½cosð’þ �Þ

� sinð’þ �Þ�

�
ðe1 � e2Þ

b ¼ 2½r02 � Sðmx�yÞr
0
2� ¼ 2r2

�
sin

 12

2
� �

� �
½cosð’þ �Þ

� sinð’þ �Þ� þ cos � cos
 12

2
� �

� �
½cosð’þ �Þ

þ sinð’þ �Þ�

�
ðe1 þ e2Þ

c ¼ 2½r03 � SðmzÞr
0
3� ¼ 4r3½cos �1 cos �

� sin �1 cosð�� �2Þ sin ��e3: ð26Þ

Tilt angles are related to the structural parameters through

tan � ¼ �
r2ðr
0
1Þz � r1ðr

0
2Þz

r2ðr
0
1Þz þ r1ðr

0
2Þz

cot
 12

2

sin � ¼
ðr01Þz

r1 cosð 12=2þ �Þ
¼

ðr02Þz
r2 cosð 12=2� �Þ

tanð�þ �Þ ¼
r2ðr
0
1Þx cosð 12=2� �Þ � r1ðr

0
2Þx cosð 12=2þ �Þ

r2ðr
0
1Þx cosð 12=2� �Þ þ r1ðr

0
2Þx cosð 12=2þ �Þ

:

ð27Þ

Notice that ðr0Þx, ðr0Þy and ðr0Þz are components of the octa-

hedral basis vectors in the XYZ Cartesian coordinate system,

which is oriented differently than the crystallographic coor-

dinate system.

3.6. Substructures of Immm

The Immm structure with a 2ac � 2ac � 2ac lattice (see x3.5)

is characterized by tilted octahedra of point symmetry �11.

Structures of higher symmetry, of which Immm is a subgroup,

can be defined by restrictions on the octahedral and tilt

parameters with the Immm type of connectivity (Fig. 10).

First consider structure with r03 parallel to c and r01 and r02 in

the (XY) plane. Consecutive octahedra along Z then become

translationally equivalent and the structure of higher

symmetry is described by Cmmm on a 2ac � 2bc � cc super-

lattice. This structure is obtained by the restriction �1 ¼ � ¼ 0

and it corresponds to the aobocþ tilt system. Different settings

of this structure follow as Ammm (tilt system aþboco) for

’ ¼ 0 and �2 ¼ �� ¼ ��=4, and as Bmmm (tilt system

aobþco) for ’ ¼ 0 and �2 ¼ �� ¼ �=4. Restrictions

�1 ¼ ’ ¼ � ¼ 0 and  12 ¼ �=2 lead to a structure of zero tilt

(aoboco) with space group Pmmm on the ac � ac � ac lattice.

If the point symmetry of an octahedron is increased from �11
toward 2x=mx (r1 ¼ r2; �2 ¼ �=2), 2y=my (r1 ¼ r2, �2 ¼ 0),

mxmymz (r1 ¼ r2, �1 ¼ 0) or 4=mz (r1 ¼ r2, �1 ¼ 0,  12 ¼ �=2),

then restrictions on tilt parameters exist that result in a

tetragonal structure. These special values of tilt parameters

are found by the condition a ¼ b [see (27)]. Employing r1 ¼ r2

this leads to

sin� sin
 12

2
� cos

 12

2

� �
¼ ðcos � � 1Þ½sinð’þ �Þ cos � cos

 12

2

þ cosð’þ �Þ sin � sin
 12

2
�: ð28Þ

An infinite number of solutions to (28) exist, but tetragonal

structures will only arise for those solutions for which the

octahedral point symmetry given above becomes the

symmetry of the crystal structure. The solution � ¼ 0,

 12 ¼ �=2 (28) leads to P4=mbm (tilt system aoaocþ) on a

21=2ac � 21=2ac � ac supercell, that already has appeared as the

supergroup of Pbnm (see x3.2). Solutions (’ ¼ 0; � ¼ 0) and

(’ ¼ 0; � ¼ �=2) lead to the space group I4=mmm (tilt system

aþaþco) on the 2ac � 2ac � 2ac superlattice (Fig. 11). Basis

vectors of this lattice can be expressed in octahedral and tilt

parameters as

a ¼ 2r1 sin
 12

2
þ cos � cos

 12

2

� �
ðe1 � e2Þ

b ¼ 2r1 sin
 12

2
þ cos � cos

 12

2

� �
ðe1 þ e2Þ

c ¼ 4r3 cos �1 cos �e3: ð29Þ

Additional restrictions on the octahedral deformation

(�1 ¼ 0) and tilt (� ¼ 0) results in a structure in which

consecutive octahedra along Z are translationally equivalent.

The symmetry is C4=mmm (tilt system aoaoao) on the
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Figure 11
Perspective views of the I4=mmm structure: (a) along Z; (b) along R�.

Figure 12
Perspective views of the P4=mmm structure: (a) along Z; (b) along the R�.



2ac � 2ac � ac supercell. This is equivalent to the conventional

setting P4=mmm on the 21=2ac � 21=2ac � ac lattice (Fig. 12).

Basis vectors of this lattice are

a ¼ 2r1 sin
 12

2
þ cos

 12

2

� �
e1

b ¼ 2r1 sin
 12

2
þ cos

 12

2

� �
e2

c ¼ 2r3 cos �1 cos �e3: ð30Þ

Octahedral symmetry �33m is obtained for the restrictions

r1 ¼ r2 ¼ r3 ¼ r and  12 ¼  13 ¼  23 ¼  . This local

symmetry may become the point symmetry of the crystal

structure for special values of the tilt parameters, then result in

cubic supergroups of Immm. The threefold axis of the octa-

hedron is parallel to the direction [21=2; 0; 1] of the Cartesian

coordinate system, if

sin � 3� tan2  

2

� �1=2

¼ 21=2 sinð’þ �Þ

cos � tan
 

2
� sin � cos � 3� tan2  

2

� �1=2

¼ 1: ð31Þ

All combinations of parameters ’, �, � and � that satisfy (31)

lead to cubic structures, with the space group Im�33 (tilt system

aþaþaþ) on a 2ac � 2ac � 2ac superlattice. The cubic lattice

constant is

a ¼ 4r
sin cos � þ cos 

cos =2ð3� tan2  =2Þ1=2
: ð32Þ

Introducing the additional constraint ’ ¼ � ¼ 0 leads to Im�33m

(tilt system aþaþco) on the 2ac � 2ac � 2ac lattice. Octahedral

distortions are intrinsic to this structure, because (31) uniquely

determines the magnitude of the distortion (value of  ) for

each tilt (value of �). Regular octahedra ( ¼ �=2) imply zero

tilt (� ¼ 0) and the aristotype structure is obtained with space

group Pm�33m on the ac � ac � ac lattice. The cubic lattice

constant depends only on octahedral parameters  and r

according to following expression

a ¼
4

3
r 2ð2Þ1=2 sin

 

2
þ cos

 

2
3� tan2  

2

� �1=2
( )

: ð33Þ

4. Discussions and conclusions

We have proposed a set of three parameters that describe the

tilt of distorted octahedra in perovskite-related structures and

that can be obtained from the atomic coordinates and lattice

parameters in a unique way (see x2). This description applies

to all ABX3 structures containing one symmetry-independent

octahedron. More than one independent octahedron allows B

site ordering and for each independent octahedron the indi-

vidual deformations and tilting should be derived. A single

restriction of the method is the assumption that the BX6

octahedron has inversion symmetry. This condition is fulfilled

for most known compounds with distorted perovskite struc-

tures.

The advantage of the present set of parameters over

previous treatments of perovskite structures is that the present

analysis explicitly deals with distortions of BX6 octahedra.

Furthermore, the tilt parameters uniquely define the tilt as

opposed to the tilt system introduced by Glazer (1972), where

the magnitudes of the rotations depend on the order in which

they are applied.

The method has been applied to transformations of Pbnm,

I2=c and Immm structures corresponding to a�a�cþ, a�a�c�

and aþbþcþ tilting systems, respectively. Comparing the

results of our analysis based on ’ and � tilting with Glazer’s tilt

systems allows the following relations to be obtained:

(i) Two equal rotations in Glazers notation (aþaþ or a�a�)

correspond to the fixed direction of the tilt axis R� (� is fixed).

(ii) Three equal tilts in (aþaþaþ and a�a�a�) in Im�33 and

R�33c structures, respectively, can be interpreted as coupled ’
and � rotations.

(iii) Two in-phase aþbþ rotations correspond to the out-of-

phase � tilting of consecutive octahedra along [110] of the

pseudo-cubic cell (Fig. 10), while two out-of-phase a�b�

rotations correspond to in-phase � tilting of consecutive

octahedra along [110] of the pseudo-cubic cell (Figs. 4 and 6).

The proposed set of parameters allows analysis of structural

transformations that arise from both octahedral tilt and

octahedral deformations. As demonstrated for Pbnm, I2=c

and Immm structures, the transformations between low- and

high-symmetry structures correspond to tilt and octahedral

parameters assuming special values in the high-symmetry

phase. This allows the characterization of subgroup/super-

group relations in terms of the values of tilt and deformation

parameters.

We suggest the following notation for structures with tilted

and deformed octahedra: (��, ’�, �; GO), where �þ or ��

indicate a possible R�ð�Þ tilt of arbitrary magnitude � and with

in-phase (+) or out-of-phase (�) coupling in the direction of

the X axis ([110] of the cubic perovskite lattice); ’þ and ’� are

similarly defined for Zð’Þ tilting. GO is the point symmetry of

the deformed BX6 octahedral group with symmetry elements

defined with respect to the Cartesian coordinates XYZ. A

value of zero for �, ’ or � is indicated by 0 in the corresponding

place. Values of �, ’ and � entirely determined by the octa-

hedral parameters are indicated by �. Notice that this relation

need not to be simple, for example, as in equation (3). In some

cases � and ’ are related to each other [see (23) and (31)],

which is indicated by ��’. For example, Pbnm on a

21=2ac � 21=2ac � 2c supercell (tilt system a�a�cþÞ is denoted

by (�þ; ’þ; �; �11), I4=mcm on a 21=2ac � 21=2ac � 2c supercell

(tilt system aoaoc�) is denoted by (0; ’�; 0; 4z=mz) and R�33c

(tilt system a�a�a�) is denoted by (�þ�’�; 0; �33m) in the new

notation.

The tabulation of all ABX3 structures is out of the scope of

this paper, but the few examples in x3 already provide novel

types of distorted ABX3 structures. They include the struc-

tures with space group Pmmm on an ac � ac � ac lattice, and

the structure with space group P4=mmm on an
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21=2ac � 21=2ac � ac lattice (x3.6), that both belong to the zero-

tilt system, but that were not obtained from group–subgroup

relations by Bock & Müller (2002).

The proposed method allows the possibility of a quantita-

tive analysis of perovskite-related structures with distorted

octahedra resulting from the octahedra tilting. The method

will also be of interest in the study of the perovskites adopting

different structures (for example, at different temperatures or

with different compositions) and in the analysis of phase

transitions.
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